
AFRL-VA-WP-TR-2004-3014

HIGHER ORDER COMMON
PLATFORM FOR COMPLEX MULTI-
PHYSICS COMPUTATION

Dale K. Ota, S.V. Ramakrishnan, Vijaya Shankar, and
Ramakanth Munipalli

HyPerComp, Inc.
31255 Cedar Valley Drive, Suite 327
Westlake Village, CA 91362

MARCH 2003

Final Report for 05 June 2002 – 05 March 2003

THIS IS A SMALL BUSINESS INNOVATION RESEARCH (SBIR) PHASE I REPORT

Approved for public release; distribution is unlimited.

STINFO FINAL REPORT

AIR VEHICLES DIRECTORATE
AIR FORCE MATERIEL COMMAND
AIR FORCE RESEARCH LABORATORY
WRIGHT-PATTERSON AIR FORCE BASE, OH 45433-7542

NOTICE

USING GOVERNMENT DRAWINGS, SPECIFICATIONS, OR OTHER DATA INCLUDED IN
THIS DOCUMENT FOR ANY PURPOSE OTHER THAN GOVERNMENT PROCUREMENT
DOES NOT IN ANY WAY OBLIGATE THE U.S. GOVERNMENT. THE FACT THAT THE
GOVERNMENT FORMULATED OR SUPPLIED THE DRAWINGS, SPECIFICATIONS, OR
OTHER DATA DOES NOT LICENSE THE HOLDER OR ANY OTHER PERSON OR
CORPORATION; OR CONVEY ANY RIGHTS OR PERMISSION TO MANUFACTURE, USE,
OR SELL ANY PATENTED INVENTION THAT MAY RELATE TO THEM.

THIS REPORT HAS BEEN REVIEWED BY THE OFFICE OF PUBLIC AFFAIRS (ASC/PA)
AND IS RELEASABLE TO THE NATIONAL TECHNICAL INFORMATION SERVICE (NTIS).
AT NTIS, IT WILL BE AVAILABLE TO THE GENERAL PUBLIC, INCLUDING FOREIGN
NATIONS.

THIS TECHNICAL REPORT HAS BEEN REVIEWED AND IS APPROVED FOR
PUBLICATION: HIGHER ORDER COMMON PLATFORM FOR COMPLEX MULTI-
PHYSICS COMPUTATION.

/s/ /s/
__ ___
Datta V. Gaitonde Datta V. Gaitonde
Leader Project Engineer
High Speed Computational Research Team High Speed Computational Research Team
Computational Sciences Branch Computational Sciences Branch

/s/
__
Douglas C. Blake
Branch Chief
Computational Sciences Branch
Air Vehicles Directorate

Do not return copies of this report unless contractual obligations or notice on a specific
document require its return.

i

REPORT DOCUMENTATION PAGE Form Approved
OMB No. 0704-0188

The public reporting burden for this collection of information is estimated to average 1 hour per response, including the time for reviewing instructions, searching existing data sources, searching existing data
sources, gathering and maintaining the data needed, and completing and reviewing the collection of information. Send comments regarding this burden estimate or any other aspect of this collection of
information, including suggestions for reducing this burden, to Department of Defense, Washington Headquarters Services, Directorate for Information Operations and Reports (0704-0188), 1215 Jefferson Davis
Highway, Suite 1204, Arlington, VA 22202-4302. Respondents should be aware that notwithstanding any other provision of law, no person shall be subject to any penalty for failing to comply with a collection of
information if it does not display a currently valid OMB control number. PLEASE DO NOT RETURN YOUR FORM TO THE ABOVE ADDRESS.

1. REPORT DATE (DD-MM-YY) 2. REPORT TYPE 3. DATES COVERED (From - To)

March 2003 Final 06/05/2002 – 03/05/2003
5a. CONTRACT NUMBER

F33615-02-M-3224
5b. GRANT NUMBER

4. TITLE AND SUBTITLE

HIGHER ORDER COMMON PLATFORM FOR COMPLEX MULTI-
PHYSICS COMPUTATION

5c. PROGRAM ELEMENT NUMBER
65502F

5d. PROJECT NUMBER

3005
5e. TASK NUMBER

40

6. AUTHOR(S)

Dale K. Ota, S.V. Ramakrishnan, Vijaya Shankar, and Ramakanth Munipalli

5f. WORK UNIT NUMBER

 LK
7. PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES) 8. PERFORMING ORGANIZATION

 REPORT NUMBER

HyPerComp, Inc.
31255 Cedar Valley Drive, Suite 327
Westlake Village, CA 91362

9. SPONSORING/MONITORING AGENCY NAME(S) AND ADDRESS(ES) 10. SPONSORING/MONITORING AGENCY
ACRONYM(S)

AFRL/VAAC Air Vehicles Directorate
Air Force Research Laboratory
Air Force Materiel Command
Wright-Patterson Air Force Base, OH 45433-7542

11. SPONSORING/MONITORING AGENCY
REPORT NUMBER(S)

 AFRL-VA-WP-TR-2004-3014
12. DISTRIBUTION/AVAILABILITY STATEMENT

Approved for public release; distribution is unlimited.
13. SUPPLEMENTARY NOTES

This is a Small Business Innovation Research (SBIR) Phase I report. Report contains color.
14. ABSTRACT

The objective of Phase-I of this project was to demonstrate feasibility of exploiting the commonality in the structure of the
governing equations in fluid dynamics and electromagnetics to develop a higher order Magneto- Gas-Dynamics (MGD)
solver, based on the 3D, unstructured, parallel discontinuous Galerkin (DG) CEM (Computational ElectroMagnetics) code
TEMPUS under development at HyPerComp. This objective was met by demonstrating conversion of the TEMPUS code,
to an inviscid flow solver with minimal modifications. The only required changes to the code were the incorporation of
appropriate flux computations and boundary conditions, while the structure of the code remained essentially same. This
code conversion was preceded by the development of an implicit scheme based on a novel linearization technique for the
flux terms, and the application of the DG scheme to classical problems in 1D and quasi 1D. The 1D demonstration
included extension of the DG formulation to MGD equations, and successful application of the scheme to the Brio-Wu
shock-tube problem and Wu’s intermediate shock problem. It has been concluded that a strong platform for high order
multi-physics computations may be built on the code structure and formulation developed in this activity, with extensions
to elliptic and parabolic differential equation systems.

15. SUBJECT TERMS

SBIR report, Discontinuous Galerkin, Higher order, multi-physics, magnetohydrodynamics

16. SECURITY CLASSIFICATION OF: 19a. NAME OF RESPONSIBLE PERSON (Monitor)

a. REPORT
Unclassified

b. ABSTRACT
Unclassified

c. THIS PAGE
Unclassified

17. LIMITATION
OF ABSTRACT:

SAR

18. NUMBER OF
PAGES

 50
 Dr. Datta Gaitonde
19b. TELEPHONE NUMBER (Include Area Code)

(937) 904-4031

 Standard Form 298 (Rev. 8-98)
Prescribed by ANSI Std. Z39-18

iii

Table of Contents

1. Introduction..1
2. Discontinuous Galerkin Algorithm..2
3. DG Formulation for 1-D Conservation laws using orthogonal polynomials.........4
4. Sample 1-D and quasi 1-D test cases...7

4.1 Perfect gas Euler equations in 1-D ..7
4.2 Quasi 1-D perfect gas ..8
4.3 Governing equations for MGD in 1-D...9
4.4 Limiters ..11

5. 1-D Results ..11
5.1 Scalar wave propagation..12
5.2 Propagating density wave ...13
5.3 Shock tube..15
5.4 Quasi 1-D...16
5.5 Intermediate shock simulation ...17
5.6 Brio-Wu shock tube problem...19

6. Point implicit schemes with orthogonal polynomials..20
6.1 Derivation of the scheme ...21

7. DG formulation for 3-D Euler equations ...25
8. Evaluation of integrals in Eq. 7.3 ..27
9. Conversion of CEM solver to Euler flow solver ...30
10. Verification of the implementation..31
11. Design of a common platform for multiphysics ..32

11.1 Multidisciplinary analysis..32
11.2 TEMPUS..34
11.3 Higher order schemes for multidisciplinary analysis35
11.4 Computational environment for multidisciplinary analysis.......37

12. Suggestions for future work...40
References ..41
Appendix-1: Flow chart ...42

1

Higher-Order Common Platform for Complex Multi-Physics Computation
Final Report

1.0 Introduction

The objective of Phase 1 of this project was to demonstrate feasibility of exploiting the
commonality in the structure of the governing equations in fluid dynamics and electromagnetics
to develop a higher-order Magneto Gas Dynamic (MGD) solver based on the 3D, discontinuous
Galerkin (DG), CEM (Computational ElectroMagnetics) code TEMPUS [1] under development
at HyPerComp. The MGD solver was to be restricted to inviscid flows. With a view to
achieving this objective, we first investigated implementation of a DG scheme for solving the
one-dimensional (1D) Euler equations, the governing equations for the flow of an inviscid fluid
in 1D. The Euler equations represent one of the simplest non-linear set of partial differential
equations (PDE) of relevance to fluid mechanics and wave propagation. We studied application
of the DG algorithm for numerical solution of 1D Euler equations as applied to simulation of
flow in a shock tube, flow through a quasi-1D convergent-divergent nozzle, and propagation of a
periodic density wave. The implementation employed was based on a novel linearization
technique for the flux terms that simplified the development of explicit schemes as well as a
point-implicit scheme. Based on the linearization, an implicit formulation for the 1D Euler
equations was developed. The DG formulation tested both monomials and orthogonal
polynomials as basis functions. The formulation was extended for inviscid, 1D, MGD equations
and solutions were obtained for the Brio-Wu shock-tube problem [2] and the Wu intermediate
shock problem [3]. This was followed by the conversion of the 3D DG CEM code, TEMPUS, to
a perfect gas Euler solver. The experience gained from the 1D studies enabled efficient code
conversion. Inviscid flow over a 2D cylinder was used as the test problem to verify the veracity
of the conversion. Future work will add the additional equations required to complete the MGD
equation set. The code conversion task validated our initial assumption that the commonality in
the structure of the governing equations cast in a conservation form in many disciplines such as
CEM and CFD may be exploited in developing a common platform for solving problems in
multi-disciplines. Design strategies for the development of a common platform for multi-physics
computation were also investigated.

In the following sections we present the details of our work in Phase 1. The fundamentals of a
DG scheme are described in section 2. Development of a DG scheme using orthogonal
polynomials for a system of conservation laws in 1D is detailed in section 3. Numerical schemes
developed using the DG scheme for simulation of inviscid, 1D and quasi-1D flows are presented
in section 4. Results obtained using the DG scheme for some classical problems are discussed in
section 5. An implicit formulation of the DG scheme is presented in section 6. The 3D DG
Euler equations are described in section 7. Evaluation of some integrals involved in the 3D
formulation is discussed in section 8. Steps involved in the conversion of the CEM code to an
Euler solver are detailed in section 9. Some 3D test results are shown in section 10. Design of a
common platform for multi-physics computation is discussed in section 11. Suggestions for the
extension of the work done under Phase I are presented in section 12.

2

2.0 Discontinuous Galerkin Algorithm

In this section, a brief description of the discontinuous Galerkin algorithm is presented by
applying it to the following generic system of conservation laws:

),,,()(tzyxSQF
t

Q rrr
r

=⋅∇+
∂
∂

 (2.1)

where Q
r

 is the vector of conserved quantities, F
r

is the flux tensor, and S
r

 is the vector of source
terms.

The computational domain (D) is partitioned into Ne non-overlapping subdomains (elements)

De. Within each element, the solution Q
r

 is projected onto a local basis vector);,,(zyxvi
e

e=0,…,Ne-1 (→e element), and i=0,1,…,n-1. It is represented by

 DezyxzyxvtQtzyxQ
n

i

i
e

i
e),,(for),,,()(),,,(

1

0
ε∑=

−

=

rr
 (2.2)

where)(tQi
e
r

 are time-dependent coefficients. The ‘Discontinuous’ in ‘Discontinuous Galerkin’

refers to the property of eqn.(2.2) by which the approximation for conserved quantities, while
continuous within an element, is not necessarily continuous across neighboring elements.

The unknown coefficients)(tQi
e
r

 are computed via a weak formulation of eqn (2.1), obtained by

multiplying it with each of the basis functions),,(zyxvi
e and then integrating by parts over each

element De to obtain

[] ;∫=⋅∫+∫ 







⋅∇−

∂
∂

∂ De

i
e

De

i
e

De

i
e

i
e dVvSAdFvdVFv

t

Q
v

rrrr
r

 e=0,…,Ne-1, i=1,2,…,n-1 (2.3)

where De∂ is the boundary of element De . The ‘Galerkin’ in ‘Discontinuous Galerkin’ refers to
satisfying a weak form of eqn.(2.1) rather than eqn.(2.1) itself..

The volume and boundary integrals in eqn.(2.3) may be evaluated using either numerical
quadratures or exact integrals depending on the basis functions employed. In either case the

boundary integral involves evaluation of the flux tensor F
r

at points on the boundary. Since Q
r

 is
not necessarily continuous across an element boundary, we need a procedure for computing a

unique value for F
r

at a boundary point. While F
r

 can be evaluated in a number of ways,

computing it by solving the Riemann problem based on the ‘left’ and ‘right’ states for Q
r

computed at an element interface using eqn.(2.2) for the ‘left’ and ‘right’ elements respectively
has produced the highest phase accuracy in our numerical experiments. Solving the Riemann

problem on the boundary of an element is physically equivalent to computing F
r

 by considering

3

only those waves, which are propagating towards the boundary, and ignoring those which are
propagating away from it.

One of the most popular Riemann solvers employed in CFD (computational fluid dynamics) is

the approximate Riemann solver developed by Roe [4]. Computation of F
r

at a boundary point

(BP) using Roe’s Riemann solver starts by computing Q
r

 at the point from eqn.(2.2) for the two

parent elements of the boundary point. Let these Q
r

 values be denoted by LQ
r

 and RQ
r

 where
the subscripts L and R refer to the “Left” and “Right” element respectively. The flux tensor at
the boundary point may now be written as

() ()[] ()LRRL QQJQFQFBPF
rrrrrrv

−−+=
2

1

2

1
)((2.4)

J is given by

LR
rrr

Λ=J (2.5)

where R
r

 and L
r

 are the “right” and “left” eigen vectors of the Jacobian
Q

F
J r

r

∂
∂

= and Λ
r

 is a

diagonal matrix whose elements are the absolute values of the eigen values of J. Equation (2.4)
may be interpreted as computing the flux vector at a boundary point using the central difference

operator, () ()[]RL QFQF
rrrr

+
2

1
 and the dissipation term ()LR QQJ

rr
−

2

1
. Computation of the

dissipation term involves evaluation of the eigen values and eigen vectors of the Jacobian matrix.
In order to avoid expensive evaluation of eigen vectors without severely compromising the
accuracy of the scheme, we employ a simpler form of eqn. (2.4) wherein the dissipation term is

computed as ()LR QQ
rr

−max2

1
λ . This leads to the following expression for the flux vector at a

point on an element boundary:

() ()[] ()LRRL QQQFQFBPF
rrrrrrv

−−+= max2

1

2

1
)(λ (2.6)

We refer to such a scheme as the “scalar dissipation” scheme because the computation of the
dissipation term involves only a scalar coefficient and not a vector coefficient as in the case of
Roe’s Riemann solver.

The choice of the basis functions);,,(zyxvi
e i=0,1,…,n-1 determines a particular type and

accuracy of the discontinuous Galerkin method. One can choose monomials such as 1, x, y, z,
x2, y2, etc. or other functions such as orthogonal polynomials as basis functions. Obviously, with
a larger basis function set, one can approximate the solution more accurately within each
element, but at the expense of higher computational cost. We refer to the method as DG-pn,

4

where n is the order of the polynomial representing the solution. It has been shown in the
literature that a DG-pn scheme will be of order at least (n+1), and of order up to (n+2) in certain
cases.

A second order TVD scheme also approximates the variation of Q
r

 within an element by a linear
function and thus has nominally the same order of accuracy as the DG-p1 scheme. The main
difference between the two schemes arises from the manner in which the gradient terms

()zyx QQQ
rrr

,, are computed. While a TVD scheme approximates the gradient terms using

numerical differencing, a DG-p1 evaluates them by solving a set of PDEs derived using
eqn.(2.3).

While TVD schemes are limited to 2nd order accuracy, DG schemes of arbitrary order of
accuracy have been formulated. Third and higher-order ENO (Essentially non-Oscillatory)
schemes which satisfy the TVD property almost everywhere have enjoyed only very limited
success. On the other hand, in CEM solutions have been obtained for some three dimensional
(3D) configurations using DG schemes of order up to eleven and it has been shown that it is
possible to substantially increase accuracy and decrease turn-around time using higher order DG
schemes.

3.0 DG Formulation for 1D Conservation Laws using Orthogonal Polynomials

In the initial stages of the contract, formulation for 1D conservation laws using both monomial
and orthogonal basis functions were studied. The orthogonal basis functions are preferred over
the monomials since they present two major advantages over the monomials, namely

1. The equations for the coefficients are uncoupled.
2. The formulation is hierarchical in the sense that to increase the order of the formulation from

n to n+1, one needs to only add the equation for the nth coefficient. This property follows
from the fact that the coefficients are uncoupled. On the other hand, in the case of
monomials addition of a basis function modifies the governing equations for all the
coefficients necessitating the reformulation of the scheme.

Another difference between the use of monomials and orthogonal polynomials arises from the

fact that while in the case of monomials 0
eQ
r

 corresponds to Q
r

 at the element center, in the case

of orthogonal polynomials it corresponds to the element average. In other words, in the case of

monomials Q
r

 is expanded about the element center while in the case of orthogonal polynomials
the expansion is about the element average.

The orthogonal polynomial basis functions, (),ξiv employed in the formulation are the Legendre
polynomials. They are obtained sequentially starting with the zeroth order polynomial by
satisfying the following conditions:

5

12

21

1 +
=∫

− i
d ijji

δ
ξνν (3.1)

1)1(=iν (3.2)

)()1()(ξνξν −−= iii (3.3)

Eqns. (3.1), (3.2), and (3.3) lead to

() ,10 =ξv () ,1 ξξ =v () ,
2

13 2
2 −

=
ξ

ξv () ,
2

35 3
3 ξξ

ξ
−

=v …., and so on (3.4)

Following the presentation in section 2, we first expand the dependent variable vector, Q
r

, within
an element as

() ()ξ∑ ⋅=
=

n

i

i
e

i
e vQxQ

0

rr
 (3.6)

where

h

xx e−
⋅= 2ξ (3.7)

where ex is the center of the element and h is its length. The dependent variables for the

numerical scheme now consist of the (n+1) vectors niQi
e ,0, =
r

. The weak form of the

governing equations, eqn.(2.3), may now be written as

() () () () () () ξξξξ
ξ

ξν
dtQSvdQF

d

d
FF

t

Q

i

h i
e

i
ei

i
e ⋅⋅∫+⋅∫ ⋅=−−−+

∂
∂

+ −
− ,,

)(
111

12

1

1

1
1

rrrrrr
r

 (3.8)

Equation (2.6) is employed in the computation of ()1F
r

 and ()1−F
r

 that involve computation of
flux vector at an element boundary.

Orthogonality of the basis functions, (),ξi
ev results in decoupling of the s'i

eQ
r

on the left-hand side

of eqn. (3.8). Orthogonality also simplifies higher-order implementations in the sense that the

order of accuracy may be increased from n to n+1 by just adding the equation for 1+n
eQ
r

. The

equations for iQ
r

, i=0,n, remain unchanged. The integrals on the right-hand side (RHS) of eqn.

(3.8) may be evaluated either using a Gaussian quadrature or by expanding the flux-vector F
r

and

the source-vector S
v

 about 0
eQ
r

. The Taylor series expansion for F
r

about 0
eQ
r

 may be written as

6

!3!2
)()(

32
0 lkj

j k l lkj

ikj

j k kj

i
j

j j

i
eii

qqq

qqq

fqq

qq

f
q

q

f
QfQf

∆⋅∆⋅∆
∑ ∑ ∑

∂∂∂
∂

+
∆⋅∆

∑ ∑
∂∂

∂
+∆∑

∂
∂

+=
rr

 + ……………….. (3.9)

where fi and qi refer to the ith component of the flux vector and dependent variable vector
respectively, and

()ξ∑ ⋅=−=∆
=

n

j

j
ei

j
eieii vqqqq

1

0 (3.10)

i
j

eq being the ith component of j
eQ
r

.

Using eqns. (3.9) and (3.10) the flux vector F
r

may be expanded in terms of the basis functions
as

() () ()ξξ ∑ ⋅=
=

n

i

i
eeee vQQQiFF

0

110 ,.....,,
rrrrr

 (3.11)

Substitution of eqn. (3.11) in eqn. (3.8) reduces the evaluation of the flux-vector integral on the
RHS of eqn. (3.8) to the evaluation of the integrals

() ξξ
ξ

dv
v j

e

i
e ⋅∫ ⋅

∂
∂

−

1

1
 i=0,n, j=0,n (3.12)

The source-vector integral may also be obtained using the same procedure.

The final form of the DG equations up to p3 are the following:

i=0: 02)1()1(0 SFFQh t

rrrv
⋅=−−+ (3.13)

i=1: 1
3

1
02)1()1(1

3
SFFFQ

h
t

rrrrr
⋅+⋅=−++ (3.14)

i=2: 2
5

1
12)1()1(2

5
SFFFQ

h
t

rrrrr
⋅+⋅=−−+ (3.15)

i=3: () 3
7

1
022)1()1(3

7
SFFFFQ

h
t

rrrrrr
⋅+−⋅=−++ (3.16)

where the flux is represented as

3210 3210 eeee FFFFF νννν ⋅+⋅+⋅+⋅=
rrrrr

 (3.17)

7

and the source term is represented as

3210 3210 eeee SSSSS νννν ⋅+⋅+⋅+⋅=
rrrrr

 (3.18)

Eqn. (3.8) can be rewritten generally as

()QRHS
t

Q r
r

=
∂
∂

 (3.19)

An explicit time update of eqn. (3.19) is done using the 4th order Runge-Kutta method. The
following equations show how the time update is done.

()nn
n

QRHS
t

QQ
rrv

⋅
∆

+=
+ 2

*

2

1 (3.20)









⋅

∆
+=

++

*

2

1
**

2

1 2 n
n

n
QRHS

t
QQ

rrv
 (3.21)









⋅∆+=

+
+

**

2

1

1

n
nn QRHStQQ

rrv
 (3.22)

() ()








+








⋅+








⋅+⋅

∆
+= +

++
+

1

**

2

1
*

2

11 22
6 n

nn
nnn QRHSQRHSQRHSQRHS

t
QQ

rrrrrv
 (3.24)

4.0 1-D and Quasi 1-D test cases

Formulations for 1D Euler, quasi-1D Euler, and 1D magneto-gas dynamics (MGD) equations are
presented in this section.

4.1 Perfect Gas Euler Equations in 1-D

The partial differential equations (PDE) that result from the conservation principle for mass,
momentum, and energy are

8

()

(4.1)
)(

 0

1

2
3

1

2
2

2

2

3
2
1

3
2
1

























+

+=
















+
+=














=












=














==+

q

q
pq

q

q
p

q

upe
up

u

f
f
f

F
e
u

q
q
q

QFQ xt ρ
ρ

ρ
ρ rrrr

() ()













−−=






 −−=

1

2
2

3
2

2
1

2

1
1 where

q

q
quep γργ

where ρ is density, u, the velocity, p, the pressure, e, the total energy per unit volume, Q
r

, the

vector of dependent variables (conserved quantities), and F
r

, the flux vector.

4.2 Quasi 1-D Perfect Gas Flow

The governing equations for an inviscid quasi-1D flow are given by

()
()

()
()

dx

dA

A
gwhere

gp
s
s
s

S
upe

up

u

F
e
uQ

AppAeeuuA

dx

dA
pS

Aupe
Aup

uA

F
Ae
Au

A
Q

SFQ xt

1

0

0

~

 then,~ ,~ ,~ ,~Let

0

~
0


~~~

~~~

~

~
~~
~

3
2
12

2

=












⋅=














=

















+
+=












=

====

















=
















+
+=












=

=+

r

r

rrr

ρ
ρ

ρ
ρ

ρρ

ρ
ρ

ρ
ρ

 (4.2)

9

where A is the area of the nozzle. That is, the governing equations for a quasi-1D flow (eqn. 4.2)
are same as the 1D Euler equations (eqn. 4.1) except for the fact that the momentum equation
includes a source term and the fact that pe and , ,ρ are scaled by the area A.

The presence of the source term S
r

 necessitates evaluation of the following integrals in the weak
form of the governing equations:

1-n0,i , 2
2

2

=⋅⋅∫
−

dxsv

h

h

i
e (4.3)

This integral may be transformed to

 1-n0,i ,
2 2

1

1

=⋅⋅∫
−

ξdsv
h i

e (4.4)

where the source term 2s is expanded in terms of the basis functions as

() () ()ξξ ∑ ⋅=
=

n

j

j
e

n
eee

j vQQQss
0

00
22 ,.....,,

rrr
 (4.5)

This reduces the evaluation of the source term integral on the RHS of eqn. (4.2) to the evaluation
of the integrals

() () ξξξν dv j
e

i
e ⋅⋅∫

−

1

1

 i=0,n, j=0,n (4.6)

The final form of the source term in eqn. (3.18) is
















=

0

0

2
jsjS

r
 (4.7)

4.3 Governing Equations for MGD Flows in 1-D

Simulation of inviscid flow of a perfect-gas in the presence of a magnetic field (inviscid MGD
flow) involves 8 dependent variables, namely, density ρ, velocity components (u,v,w), energy
per unit mass, e, and three components of the magnetic field, (Bx, By, Bz). In the case of one-
dimensional flows, the derivatives in two coordinate directions, for examples, the y and z

10

directions, vanish identically. When there is no magnetic field present, this implies that the v
and w components of velocity must remain constant in the x-direction. On the other hand, when
a magnetic field is applied to the flow of a conducting fluid, Lorentz forces are produced, that
can cause an x-variation of v and w components. The only dependent variable that vanishes
identically is the x component of the magnetic field, Bx. (The equation set for ideal MHD is
over-determined, and requires that the magnetic field is divergence free. In 1-D this implies that

constant≡xB , since 00 ≡
∂

∂
⇒≡

∂
∂

≡
∂

∂

x

B

z

B

y

B
xzy .)

Further details on the conservation laws in MGD may be found in any standard text on the
subject, e.g., Sutton and Sherman [5]. The governing equations for inviscid, 1D, MGD flows
may be written in conservation form as

0=+ xt FQ (4.7)

where the vector of dependent variables, Q, and the flux vector, F, are given by





























=

e

B

B

w

v

u

Q

z

y

ρ
ρ
ρ
ρ

r

() ()



























++−+
−
−
−
−
+

=

∗

∗

wBvBuBBupe

wBuB

vBuB

BBuw

BBuv

pu

u

F

zyxx

zz

xy

zx

yx

ρ
ρ
ρ

ρ
2

r
 (4.8)

Total energy, e, and modified pressure, *p are defined by

() ()222222

2

1

2

1

1 zyx BBBwvu
p

e ++++++
−

= ρ
γ

 (4.9)

()222
2

1
zyx BBBpp +++=∗ (4.10)

Eigen values of the 1-D inviscid flux may be computed from the above relations, and are
required to estimate numerical dissipation in the Lax-Friedrichs method. They are:





















±
±
±

=

u

cu

cu

cu

s

a

f

λ , with











−±=

=

∗∗ 2242
, 4

2

1
xsf

xa

baaac

bc

 (4.11)

11

222 zyx
z

z
y

y
x

x bbbb
B

b
B

b
B

b ++====
ρρρ

22 baa
P

a +== ∗

ρ
γ

4.4 Limiters

In the numerical solution of partial differential equations that govern the physics of fluid motion
limiters are a necessary evil. While they do reduce the accuracy of a numerical scheme, they are
required to ensure stability when discontinuities and high curvature regions are encountered.
Even though Atkins and Shu state in one of their papers [6] that they have been able to obtain
stable solutions for a non-linear problem in 1D with shocks, their solutions for DG-p2 exhibit
typical behavior of a solution obtained without limiters (overshoots and undershoots in the shock
region) clearly confirming the need for limiters.

Limiters enter into a computational process that employs a piecewise continuous approximation
for the dependent variables when integrals at element boundaries are evaluated. Evaluation of
such an integral involves computation of the integrant at element boundaries by interpolating the
piecewise continuous approximation. This process invariably leads to two different values for
the integrant computed from the interpolation performed for the two neighboring elements. Such
a discontinuity at an element boundary is usually resolved using a Riemann solver. Limiters are
required to ensure that the interpolation process does not result in new maxima or minima. In

our formulation, we employ a minmod limiter [7] for each of the coefficients)(tQi
e in eqn.

(2.2). More research is needed to optimize limiting to ensure stability of the scheme without
compromising accuracy.

5.0 1-D Results

Results from the application of the 1D DG scheme for the simulation of
1. a simple scalar wave propagation,
2. inviscid propagating density wave,
3. inviscid flow in a shock tube,
4. inviscid, quasi-1D flow in a convergent-divergent nozzle,
5. MGD flow with an intermediate shock, and
6. Brio-Wu problem

are presented in the following sections. Note that the order in which the results are presented
represent the increasing order of difficulty involved in simulating a simple scalar wave to an
MGD flow that involves discontinuities.

The first example considered here, namely propagation of a simple wave, is probably the
simplest form of conservation law that one may encounter. In this case the vector of dependent
variable has just one element. In other words, the governing equation involves a scalar

12

conservation law. The flux vector is just a linear function of the dependent variable vector. The
solution involves a simple wave propagating at a constant speed.

The second example involves a system of conservation laws. The equations solved are the one-
dimensional Euler equations (eqn. 4.1). This case also involves a simple traveling wave. By
setting 1≡u and 1≡p , the solution is forced to correspond to a density wave traveling at a
constant speed. This example serves the purpose of validating the implementation of a 1D, DG
solver for Euler equations.

The flow in a shock tube is a classical problem employed in computational fluid dynamics
(CFD) to evaluate the accuracy of a numerical scheme in simulating a system of equations that
involve multiple waves traveling at non-constant speeds.

Inviscid, quasi-1D flow adds the complexity of a source term to the governing equations and
serves the purpose of evaluating the accuracy of a numerical scheme in dealing with source
terms.

Intermediate MHD shocks are discontinuities across which the tangential magnetic field
component changes sign and the shock frame velocity of the flow changes from super to sub-
Alfvenic across the shock. We select this problem for study, since it stands to benefit from
higher order simulations and possesses smooth solutions (when used with periodic BCs in 1-D)
until the formation of the shock.

The Brio and Wu [2] 1-D MHD shock tube validation case represents an important porting of
shock tube validation studies (such as that of Sod, Van Leer, etc. in perfect gases,) to MHD.

5.1 Scalar Wave Propagation in 1D

This simple time-dependent problem demonstrates the hierarchical improvement in simulation
accuracy attainable using the DG-p0, DG-p1, and DG-p2 schemes. In this case the governing
equation is given by

0.21.0 ,0 ≤≤−=+ xuu xt (5.1)

with a cubic polynomial as the initial condition. That is,





















≤≤
≤≤+⋅+⋅−

≤≤−+⋅+⋅−

−≤≤−

=

2.0x 0.05 0

05.00 1120016000

005.0 1120016000

05.01.0 ,0

)0,(
23

23

xxx

xxx

x

xu (5.2)

13

The boundary conditions employed are

0),2(),2(t)(-0.1,),1.0(====− tutuutu xx (5.2)

Figure 1. Solution for t=1.6

The grid employed has a resolution of 01.0=dx . Solutions obtained for 6.1=t using DG-p0,
DG-p1, and DG-p2 are compared with the exact solution in fig.1. The exact solution is nothing
but a simple wave traveling to the right at a constant speed. As such the solution at 6.1=t is the
same as the solution at 0=t shifted to the right by 6.1 .

Hierarchical nature of the simulation accuracy may be seen from the fact that while the DG-p2
solution agrees with the exact solution almost exactly, DG-p1 solution is visibly different from
the exact solution and DG-p0 solution has an unacceptably large error. The dissipative and
disspersive nature of the errors may be observed from the decrease in amplitude and increase in
wave length that accompany a decrease in the order of the scheme.

5.2 Propagating Density Wave

In the last example, we demonstrated the accuracy of a DG scheme in simulating a scalar
traveling wave. The governing equation involved just one PDE (partial differential equation).
Here we consider a system of PDEs representing three conservation laws, namely, the 1D, Euler
equations (eqn. 4.1). In order to simplify the problem and employ this case as a test case for the
verification of our implementation of a DG scheme for 1D, Euler equations, we force u and p to
be identically equal to 1 so that the solution involves a simple density wave propagating at a
constant speed. In reality this case is no different from the first example as far as the solution is
concerned. The only difference is that we use a code developed for solving the 1D, Euler
equations.

The 1D, Euler equations are solved in the domain 11 ≤≤− x , with the initial condition for
density given by

14

()xx πρ sin2)0,(+=

With periodic boundary conditions, 1≡u , and 1≡p this problem has the following exact
solution:

())(sin2 utx −+= πρ

The solution for this case at t=100 is shown in fig. 2. It may be seen from this figure that the p2
scheme preserves the wave better than the p1 scheme indicating the improved accuracy that is
possible with the p2 scheme.

Error analysis performed for three different grid spacings is shown in Table 1. It may be seen
from the table that the error for the p2 scheme is 2 to 3 orders of magnitude smaller. The order
of convergence is also higher for the p2 scheme.

No. of grid points P1: error order P2: error order
32 2.5e-1 2.0e-3
64 3.5e-2 2.8 1.1e-4 4.1
128 4.5e-3 2.9 9.6e-6 3.6

Table 1: Error for the p1 and p2 schemes for different grid resolutions

Figure 2. Solution for a simple density wave at t=100.

One of the major benefits that one may expect to derive from application of a higher order
scheme to an unsteady problem involves predicting solutions for large t. In order to assess the
improvement in accuracy attainable with a fourth order scheme (DG-p3), the density wave was
propagated to t=50,000. The results obtained using the p2 and p3 schemes are compared in
fig.3.

15

The grid resolution employed corresponds to 20 points per wave. It may be seen from this figure
that the p3 scheme performs much better than p2 scheme justifying the use of higher-order
accuracy in similar problems.

Figure 3. DG-p2 and DG-p3 schemes compared.

5.3 Shock Tube

The flow in this example starts with a stationary gas in a tube partitioned by a diaphragm. The
gas on the right-hand side of the diaphragm is at a higher pressure)4(p and density)4(ρ than
the gas on the left-hand side)1 and 1(ρp . Simulations were carried out with pressure and density
ratios given by

2
1

4
=

p

p
, 2

1

4
=

ρ
ρ

When the diaphragm is punctured at 0=t , a shock wave propagates into the high pressure
region while an expansion wave and a contact discontinuity propagate into the low pressure
region. The simulation discussed here employed a computational domain given by:

5.05.0 ≤≤− x . The diaphragm was located at 0=x . The grid employed had 300 elements.

Solutions obtained using DG-p0, DG-p1, and DG-p2 are compared with the exact solution in
fig.4. While the figure shows a substantial improvement in accuracy as the order of the scheme
is increased from 1 (DG-p0) to 2 (DG-p1), the solution for 3rd order (DG-p2) scheme appears to
be no better than the solution for the 2nd order scheme. This may be due to the fact that unlike
the last two examples the 2nd derivative in this case is identically zero for a substantial portion
of the computational domain decreasing the role of the parabolic term in the basis function.

16

Fig. 5 shows the effect of the CFL number on the solution for the DG-p1 scheme. While
CFL=0.1 and CFL=0.3 produce almost identical solutions, CFL=0.4 results in an oscillatory
behavior indicating that the simulation is unstable. This behavior is consistent with the fact that
the CFL limit for a DG-pn scheme is given by [8]

12

1

+⋅
≤

n
CFL (37)

and as such the DG-p1 scheme is unstable for
3

1
CFL ≥ .

 Figure 4. DG-p0, DG-p1, and Dg-p2 compared Figure 5. DG-p1; effect of CFL

5.4 Quasi-1D Flow

So far we have considered a simple wave resulting from a scalar conservation law, a density
wave that represents the solution to a system of conservation laws, and a flow that involves
multiple waves traveling at non-constant speeds. In this section we present solutions for inviscid
flow in a quasi-1D convergent-divergent nozzle which involves solving a system of conservation
laws with an added complexity of a source term.

The convergent-divergent nozzle selected for this example has cross-sectional area represented
by a cubic polynomial. The computational domain extends from 1−=x to 1=x . The area
distribution is symmetric about 0=x . Area is minimum at 0=x . The area ratio, that is the ratio
between the area at 0=x and area at 1−=x (or 1=x) is equal to 0.9. The nozzle contour was
defined in such a way that the slope was zero at the entrance (1−=x), exit (1=x), and throat
(0=x) of the nozzle. Flow conditions were chosen to ensure that the flow did not choke, that is
the flow remained either supersonic or subsonic everywhere depending on the flow at nozzle
entrance.

17

The results obtained from our study are shown in fig.6. The DG-p0 scheme has a slope of 1
while DG-p1 has a slope of 1.92 which corresponds to orders of accuracy of 1 and 1.92
respectively. We have not yet been able to obtain satisfactory performance with the DG-p2
scheme. The error for the DG-p2 scheme (not shown in the figure) is slightly less that for DG-p1
but only slightly. We believe that this is due to the fact that the error for the DG-p1 solution is
already very near machine zero for.

Figure 6. Error Analysis

5.5 Intermediate Shock Simulation
Intermediate MHD shocks are discontinuities across which the tangential magnetic field
component changes sign and the shock frame velocity of the flow changes from super to sub-
Alfvenic across the shock. Wu [3] first demonstrated the feasibility of formation of intermediate
shocks in a MHD flow through nonlinear wave steepening from continuous waves. We select
this problem for study, since it stands to benefit from higher order simulations and possesses
smooth solutions (when used with periodic BCs in 1-D) until the formation of the shock. Wu [3]
employed the following simple wave solution of the MHD equations as the initial conditions:

()xBy π2sin5.0 ⋅=

()2ac

B

B
s

y

y −
=

∂
∂ρ

,

() ()
()22 ac

Bcu

B

u

s

ys

y −

⋅+
=

∂
∂ ρ

,
() ()

()22

22

acc

vBccBBa

B

v

ss

yssxx

y −⋅

+−
=

∂
∂ ρ

18

22

2

aC

Ba

B

p

s

y

y −

⋅
=

∂
∂

0 1 0 === zx BBw

Jiang and Wu [9] obtained numerical solutions for this intermediate shock problem using a 3rd

order ENO and a 5th order WENO schemes. Their results showed that the 3rd order ENO and the
5th order WENO schemes performed quite well when marched in time to obtain solution for
t=0.25 (fig. 7). At this particular instance in time the y-component of the magnetic field, By, is
quite smooth and still far from steepening. On the other hand, at t=0.5 (fig. 8), By profile
exhibits large gradients showing a tendency to form a shock. Their error analysis, when applied
to the whole computational domain showed poor results. When they restricted their error
analysis to smooth regions of the flow, they were able to show that their algorithm had the
desired order of accuracy.

Solutions obtained from our numerical simulation for this problem are shown in figs. 7-8.
Solutions have been obtained using various grids with spatial resolution as coarse as 0.1 (10
elements) to as fine as 0.00039 (2560 elements). The y-component of the magnetic field at
t=0.25, shown in fig. 7, appears to have been quite well predicted by all grids except the
coarsest. The plot of the L1-norm of the error, computed using the finest grid solution as the
exact solution, indicates that the 2nd (p1) and 3rd order (p2) schemes have the same level of
accuracy and match the accuracy of Jiang and Wu’s 3rd order ENO scheme. The error analysis
for t=0.5 indicates that the 3rd order (p2) DG algorithm is more accurate than the 2nd order
scheme. More interestingly, both the 2nd and 3rd order DG algorithms perform better than even
the 5th order WENO scheme [9].

The fact that the p2 solution is more accurate than p1 solution for t=0.5 and the fact that for
t=0.25 the two solutions have almost the same order of accuracy is probably due to the fact that

the contribution from ()ξ2
ev is not significant when the solution is smooth and becomes

significant as the yB profile starts steepening.

roushrv
Figure 7. Solution for t=0.25

19

Figure 8. Solution for t=0.5

5.6 The Brio-Wu Shock-Tube Problem

Brio and Wu [2] presented the first implementation of Roe’s Riemann solver in 1-D MHD
problems and obtained a Roe linearization for the case of γ = 2. The shock tube problem used by
them to demonstrate their solver represents an important porting of shock tube validation studies
(such as that of Sod, Van Leer, etc. in perfect gases,) to MHD.

Figure 9. Initial Conditions for the shock-tube problem

The initial conditions employed in this problem are shown in fig. 9. Distributions of pressure,
density, and y-component of the magnetic field obtained from our numerical simulation using a
fine grid (800 elements) and a coarse grid (100 elements) are shown in figs. 10-11. Our fine grid
solutions using 2nd order (p1) and 3rd order (p2) schemes were compared with those from a
Kinetic Flux Vector Splitting scheme developed by Xu [10] and implemented earlier in MHD
related work in HyPerComp (Munipalli and Shankar [11]). These two results match closely.
Coarse-grid solutions are compared with the 3rd order fine-grid solution in Fig. 11. It may be
seen from this figure that the 2nd and 3rd order solutions are almost identical and show a marked
improvement over the 1st order solution. As in the case of intermediate shock solution for
t=0.25, the 2nd derivatives are almost non existent in many regions of the flow contributing to the
fact that the 2nd and 3rd order solutions are almost identical.

Diaphragm

p = 1
ρ = 1
By = 1
Bz = 0
u,v,w = 0

p = -1
ρ = 0.125
By = -1
Bz = 0
u,v,w = 0

20

Figure 10. Fine-grid (800 grid elements) solution for t=0.4.

Figure 11. Coarse-grid (100 grid elements) solution for t=0.4.

6.0 Point Implicit Scheme with Orthogonal Polynomials

All the computations discussed so far were carried out using a 4th order Runge-Kutta explicit
time marching scheme. The need for an implicit scheme arises from the fact that the CFL limit
for an explicit DG-pn scheme is given by [8]

12

1

+
≤

n
CFL (6.1)

This imposes a very stringent limitation on the allowable time-step. Implicit schemes, on the
other hand, do not have any CFL limit and the allowable time step is determined only by the time
accuracy required by the problem under consideration. For steady state simulations, ability to
employ large values for the time-step will result in fast turn-around time. Also, when a non-
uniform grid is employed, allowable time-step is determined by the finest grid element which
could be orders of magnitude smaller than the coarsest, especially for viscous flows. Hence, it is
highly desirable to develop an implicit scheme.

In order to advance the solution from time level n to level (n+1) using an implicit scheme, all the
terms in the discretized governing equations (eqn. 3.8) must be evaluated at time level (n+1).
Specifically, all the flux terms and the source terms need to be computed at time level (n+1).

21

Expressions for () () 






=−






= ++++
2

h-
F1 and

2

h
F 1 c1n1c1n1 rrrr nn FF in eqn. 3.8 (flux at the right

and left boundary respectively) using the scalar dissipation scheme (eqn. 2.6) and orthogonal
polynomials as basis functions is presented in this section.

6.1 Derivation of the scheme

For the right face,

neighborright cell, ⇒⇒ rnc

 10 nnn
L cQcQQ

rrr
+=

t
t

cQ

t

cQ
QQ n

L
n
L ∆








∂

∂
+

∂
∂

+=+ 101
rr

rr

 10 n
r

n
r

n
R nQnQQ

rrr
−=

t
t

nQ

t

nQ
QQ rrn

R
n
R ∆









∂
∂

−
∂

∂
+=+ 101

rr
rr

() ()11

max

111

2

1

2

1

2
+++++ −−+=






 n

L
n
R

n
R

n
L

cn QQFF
h

F
rrrrr

λ









∂

∂
+

∂
∂










∂
∂

+=+
t

cQ

t

cQ

Q

F
FF

n

h
n
L

n
L

c

10

2

1
rr

r

r
rr










∂
∂

−
∂

∂









∂
∂

+=
−

+

t

nQ

t

nQ

Q

F
FF rr

n

h

n
R

n
R

r

10

2

1

rr

r

r
rr

c nr

hc hr

LL QF
rr

, RR QF
rr

,

22

() ()









∂

∂
−

∂
∂

−
∂

∂
−

∂
∂

−

∆
























∂
∂

−
∂

∂









∂
∂

+







∂

∂
+

∂
∂










∂
∂

+

−−+=








−

+

t

cQ

t

cQ

t

nQ

t

nQ

t
t

nQ

t

nQ

Q

F

t

cQ

t

cQ

Q

F

QQFF
h

F

rr

rr
n

h

n

h

n
L

n
R

n
R

n
L

cn

rc

1010

1010

2

1

2

1

2

max

22

max
1

rr

r

rrr

r

r

rrrrr

λ

λ

t
t

nQ
t

t

cQ

Q

F

t
t

nQ

Q

F
t

t

cQ

Q

Fh
F

r

n

h

n

h

r

n

h

n

h

cn

rc

rc

∆
∂

∂
















−









∂
∂

−∆
∂

∂
















+









∂
∂

+

∆
∂

∂
















−









∂
∂

+∆
∂

∂
















+









∂
∂

+





=

−

−

0

Q

F

2

11

2

1

0

2

10

2

1

2

max

2

max

2

max

2

max

2

v

r

rr

r

r

v

r

rr

r

r

λλ

λλ

() ()
n

x

n

x
Q

F
x

Q

F
x












−









∂
∂

=











+









∂
∂

=
maxmax 2

1

2

1
λσλφ r

r

r

r










∂
∂

−
∂

∂






−∆+








∂

∂
+

∂
∂








∆+






=






+
t

nQ

t

nQh
t

t

cQ

t

cQh
t

h
F

h
F rrrccncn 10

2

10

222
1

rrrr
rr

σφ (6.2)

For the left face,

neighborleft cell, ⇒⇒ lnc

n
l

n
l

n
L nQnQQ 10

rrr
+=

t
t

nQ

t

nQ
QQ lln

L
n
L ∆











∂
∂

+
∂

∂
+=+ 101

rr
rr

cnl

hchl

LL QF
rr

, RR QF
rr

,

23

 10 nnn
R cQcQQ

rrr
−=

t
t

cQ

t

cQ
QQ n

R
n
R ∆








∂

∂
−

∂
∂

+=+ 101
rr

rr

() ()11

max

111

2

1

2

1

2
+++++ −−+=






− n

L
n
R

n
R

n
L

cn QQFF
h

F
rrrrr

λ












∂
∂

+
∂

∂









∂
∂

+=+
t

nQ

t

nQ

Q

F
FF ll

n

h
n
L

n
L

l

10

2

1
rr

r

r
rr









∂

∂
−

∂
∂










∂
∂

+=
−

+
t

cQ

t

cQ

Q

F
FF

n

h
n
R

n
R

c

10

2

1
rr

r

r
rr

() ()










∂
∂

−
∂

∂
−

∂
∂

−
∂

∂
−

∆
























∂

∂
−

∂
∂










∂
∂

+










∂
∂

+
∂

∂









∂
∂

+

−−+=






−

−

+

t

nQ

t

nQ

t

cQ

t

cQ

t
t

cQ

t

cQ

Q

F

t

nQ

t

nQ

Q

F

QQFF
h

F

ll

n

h
ll

n

h

n
L

n
R

n
R

n
L

cn

cl

1010

1010

2

1

2

1

2

max

22

max
1

rrrr

rr

r

rrr

r

r

rrrrr

λ

λ

t
t

cQ
t

t

nQ

Q

F

t
t

cQ

Q

F
t

t

nQ

Q

Fh
F

n

h
l

n

h

n

h
l

n

h
cn

cl

cl

∆
∂

∂

















−








∂
∂

−∆
∂

∂

















+








∂
∂

+

∆
∂

∂

















−








∂
∂

+∆
∂

∂

















+








∂
∂

+






−=

−

−

1

Q

F

2

11

2

1

0

2

10

2

1

2

max

2

max

2

max

2

max

2

r

r

rr

r

r

r

r

rr

r

r

λλ

λλ

() ()
n

x

n

x
Q

F
x

Q

F
x












−









∂
∂

=











+









∂
∂

=
maxmax 2

1

2

1
λσλφ r

r

r

r









∂

∂
−

∂
∂








−∆+










∂
∂

+
∂

∂







∆+






−=






−+
t

cQ

t

cQh
t

t

nQ

t

nQh
t

h
F

h
F clllcncn 10

2

10

222
1

rrrr
rr

σφ (6.3)

PDE for 0Q
r

:

24

0
22

0
11

=






−−






+
∂

∂
⋅

++ n
c

n
c

c
h

F
h

F
t

cQ
h

rr
r

 (6.4)

From equations (6.2), (6.3), and (6.4), we get

0
10

2

10

2

1

22

0

22

22

0

=










∂
∂

+
∂

∂







∆−








∂
∂

−
∂

∂






−∆+

∂
∂
















−+






∆+
∂

∂















−−






∆+








−−






+
∂

∂
⋅

t

nQ

t

nQh
t

t

nQ

t

nQh
t

t

cQhh
t

t

cQhh
t

h
F

h
F

t

cQ
h

lllrrr

cccc

n
c

n
c

c

rrrr

rr

rr
r

φσ

σφσφ















−−






=

22

1
0 cc

c

h
F

h
F

h
cR

rrr












∂
∂

+
∂

∂∆







+








∂
∂

−
∂

∂∆






−−

−=
∂

∂







 ∆















−+






+
∂

∂







 ∆















−−






+

t

nQ

t

nQ

h

th

t

nQ

t

nQ

h

th

cR
t

cQ

h

thh

t

cQ

h

thh

ll

c

lrr

c

r

c

cc

c

cc

10

2

10

2

0
1

22

0

22
1

rrrr

r
rr

φσ

σφσφ

 (6.5)

PDE for 1Q
r

:

02
22

1

3

11
F

h
F

h
F

t

cQh n
c

n
cc rrr

r

⋅=






−+






+
∂

∂
⋅

++
 (6.6)

From equations (6.2), (6.3), and (6.4), we get

02
11

2

10

2

1

22

0

22

22

1

3

F
t

nQ

t

nQh
t

t

nQ

t

nQh
t

t

cQhh
t

t

cQhh
t

h
F

h
F

t

cQh

lllrrr

cccc

n
c

n
cc

r
rrrr

rr

rr
r

⋅=










∂
∂

+
∂

∂







∆+








∂
∂

−
∂

∂






−∆+

∂
∂
















−−






∆+
∂

∂















−+






∆+








−+






+
∂

∂
⋅

φσ

σφσφ









⋅−






−−






= 02

22

3
1 F

h
F

h
F

h
cR cc

c

rrrr

25












∂
∂

+
∂

∂∆







−








∂
∂

−
∂

∂∆






−−

−=
∂

∂







 ∆















−−






++
∂

∂







 ∆















−+








t

nQ

t

nQ

h

th

t

nQ

t

nQ

h

th

cR
t

cQ

h

thh

t

cQ

h

thh

ll

c

lrr

c

r

c

cc

c

cc

10

2

10

2

1
1

22
1

0

22
rrrr

r
rr

φσ

σφσφ

 (6.7)

We employ a point implicit scheme to solve for
t

Q

∂
∂ 0
r

and
t

Q

∂
∂ 1
r

 from equations 6.6 and 6.7.

Point-implicit scheme is an iterative scheme in which the value from the previous iteration is
used for all the terms in an equation except the term that corresponds to the dependent variable
that is solved for. The convergence characteristics of such a scheme for numerical simulation of
a quasi-1D flow in a convergent divergent nozzle is compared with the convergence
characteristics of a four stage explicit Runge-Kutta time–marching scheme in fig. 12. The figure
shows that an order of magnitude acceleration in convergence may be achieved using a point
implicit scheme.

Figure 12. Convergence Characteristics of a p1 Point Implicit Scheme for Quasi-1D Flow in a
Convergent-Divergent Nozzle

7.0 DG Formulation for the 3D Euler Equations

In this section, the formulation of the 3D DG Euler equations is presented. The structure of the
equations follows the notation and conventions used in the 3D CEM DG code TEMPUS.

The 3D Euler equations can be written as

26

() 0=⋅∇+
∂
∂

QF
t

Q rrr
r

 ,























=

e

w

v

u

Q

ρ
ρ
ρ
ρ

r
 (7.1)

zyx fffF
rrrr

,,= ,

() 





















+

+
=

upe

uw

uv

up

u

fx

ρ
ρ

ρ
ρ

2

r
,

() 





















+

+=

vpe

vw

vp

vu

v

f y

ρ
ρ

ρ
ρ

2
r

,

() 





















+
+

=

wpe

wp

wv

wu

w

fz

2ρ
ρ
ρ
ρ

r
 (7.2)

where ρ is density, u is the velocity in the x-direction, v is the velocity in the y-direction, w is
the velocity in the z-direction, e is the total energy per unit volume, and p is the pressure defined
as

() ()





 ++−−= 222

2

1
1 wvuep ργ where γ is the ratio of specific heats.

The DG form of the Euler equations can be written as

() ()dVQFdSnQFdV
t

Q

icicic V

i

S

i

V

i
rrrr

r

⋅∇+⋅−=
∂
∂

∫∫∫ ννν ˆ (7.3)

where ic is the current cell, iν the ith basis function, V the cell volume, and S the cell face
surface.

The basis functions in this version of the code are monomials. The monomials for up to P=2
(third order) are given in eqn. (7.4). For first order, P=0, i=0, and for second order, P=1,

30 ≤≤ i .

() () () () () ()
() () ()2

9
2

8
2

7

654

321

0

 , ,

 , ,

 , ,

1

ccc

cccccc

ccc

zzyyxx

zzyyzzxxyyxxv

zzyyxx

v

−=−=−=

−⋅−=−⋅−=−⋅−=
−=−=−=

=

ννν

νν
ννν

 (7.4)

where c is for the cell centroid.

The solution vector Q is expanded in the basis functions and the component j of the vector Q is

27

i
j

JP

i

i
j qQ ∑

=

=
0

ν (7.5)

with JP=0 for P=0, JP=3 for P=1, and JP=9 for P=2.

Similarly, the flux vector F is expanded in a Taylor series about the cell centroid. The expansion

for the thj component of the flux vector may be written as

i
j

JP

i

i
j fF ∑

=

=
0

ν (7.6)

with

()00 qFf jj

r
= for i=0 (P=0) (7.7)

 i
k

k k

ji
j q

Q

F
f ∑

= ∂
∂

=
5

1

 for i=1,3 (P=1)

 i
k

k k

ji
l

i
k

k l lk

ji
j q

Q

F
qq

QQ

F
f ∑∑∑

== = ∂
∂

+
∂∂

∂
=

5

1

21
5

1

5

1

2

for i=4,9 (P=2)

for i=4, i1=1, i2=2, for i=5, i1=1, i2=3, for i=6, i1=2, i2=3, for i=7, i1=1, i2=1, for i=8, i1=2,
i2=2, and for i=9, i1=3, i2=3.

8.0 Evaluation of Integrals in eqn. 7.3

This section describes how each of the integral terms in eqn. (7.3) is evaluated. The first integral

to be evaluated is dV
t

Q

icV

i∫ ∂
∂
r

ν which will be rewritten using the basis function expansion for Q.

 dV
t

Q

icV

i∫ ∂
∂
r

ν = dV
t

q

t

q JP

j V

j
ji

V

JP

j

j
ji

icic

∑ ∫∫ ∑
== ∂

∂
=

∂
∂

00

νννν

with
()
() ζηξ

ζηξ
∂∂∂

∂
∂

=
,,

,, zyx
dV , dV

t

Q

icV

i∫ ∂
∂
r

ν can be rewritten in transformed coordinates as

dV
t

Q

icV

i∫ ∂
∂
r

ν =
()
() ζηξ

ζηξ
νν

ξ η ζ

∂∂∂
∂
∂

∂
∂

∫ ∫ ∫∑
+

−=

+

−=

+

−== ,,

,,1

1

1

1

1

10

zyx

t

q ji
JP

j

j

=
t

q
m

jJP

j
ij ∂

∂∑
=0

 (8.1)

[]ijmM = is the mass matrix.

28

The next integral to be evaluated is ()dVQF
icV

i
rr

⋅∇∫ ν .

 ()dVQF
icV

i
rr

⋅∇∫ ν = dVf
z

f
y

f
x

icV

z

i

y

i

x

i

∫ 







∂

∂
+

∂
∂

+
∂

∂ ννν

Following the evaluation process of dV
t

Q

icV

i∫ ∂
∂
r

ν , ()dVQF
icV

i
rr

⋅∇∫ ν is rewritten using the basis

function expansion of fx, fy, and fz as

 ()dVQF
icV

i
rr

⋅∇∫ ν = dVf
z

f
y

f
x

icV

JP

j

j
z

j
i

j
y

j
i

j
x

j
i

∫∑
=









∂

∂
+

∂
∂

+
∂

∂

0

ν
ν

ν
ν

ν
ν

Finally using the expression for dV given earlier, we get

()dVQF
icV

i
rr

⋅∇∫ ν =

()
() ζηξ

ζηξ
ν

ν

ξ η ζ

∂∂∂
∂
∂

∂
∂

∫ ∫ ∫∑
+

−=

+

−=

+

−== ,,

,,1

1

1

1

1

10

zyx

x
f j

iJP

j

j
x

()
() ζηξ

ζηξ
ν

ν

ξ η ζ

∂∂∂
∂
∂

∂
∂

+ ∫ ∫ ∫∑
+

−=

+

−=

+

−== ,,

,,1

1

1

1

1

10

zyx

y
f j

iJP

j

j
y

()
() ζηξ

ζηξ
ν

ν

ξ η ζ

∂∂∂
∂
∂

∂
∂

+ ∫ ∫ ∫∑
+

−=

+

−=

+

−== ,,

,,1

1

1

1

1

10

zyx

z
f j

iJP

j

j
z

or

()dVQF
icV

i
rr

⋅∇∫ ν = ()∑
=

++
JP

j

j
zij

j
yij

j
xij fmzfmyfmx

0

 (8.2)

where [] [] []ijijij mzmymxMzMyMx , ,, , = are the gradient mass matrices.

The final integral is () dSnQF
icS

i ˆ⋅∫
rr

ν . This is a surface integral at the interior cell faces which will

use information from the current cell (ic) and the neighbor cell (inb). The face flux is formed
using the local Lax-Friedrichs scheme.

() () ()inbicinbic QQFFnQF
rrrrrr

−++=⋅ max2

1

2

1
ˆ λ

where cu ˆˆmax +=λ , zyx nwnvnuu ⋅+⋅+⋅=ˆ and
ρ
γp

c =ˆ .

zyx nnnn ,,ˆ = is the unit normal at the cell face and

29

zzyyxxic nfnfnfF ˆˆˆ ⋅+⋅+⋅=
rrrr

 (all expansions from cell centroid ic)

zzyyxxinb nfnfnfF ˆˆˆ ⋅+⋅+⋅=
rrrr

 (all expansions from cell centroid inb)

Expand QF
rr

 and in the basis functions and () dSnQF
icS

i ˆ⋅∫
rr

ν can be rewritten using the following

expression for
() ()

ηξ
ηξ

∂∂
∂

∂
×

∂
∂

=
zyxzyx

dS
,,,,

() dSnQF
icS

i ˆ⋅∫
rr

ν =
() ()∑ ∫ ∫

=

+

−=

+

−=










∂∂

∂
∂

×
∂

∂JP

j

j
ic

i
ic

j
ic

zyxzyx
f

0

1

1

1

1

,,,,

2

1

ξ η

ηξ
ηξ

νν

() ()∑ ∫ ∫

=

+

−=

+

−=










∂∂

∂
∂

×
∂

∂
+

JP

j

j
inb

i
ic

j
inb

zyxzyx
f

0

1

1

1

1

,,,,

2

1

ξ η

ηξ
ηξ

νν

() ()∑ ∫ ∫

=

+

−=

+

−=










∂∂

∂
∂

×
∂

∂
+

JP

j

j
ic

i
ic

j
ic

zyxzyx
q

0

1

1

1

1

max

,,,,

2

1

ξ η

ηξ
ηξ

ννλ

() ()∑ ∫ ∫

=

+

−=

+

−=










∂∂

∂
∂

×
∂

∂
−

JP

j

j
inb

i
ic

j
inb

zyxzyx
q

0

1

1

1

1

max

,,,,

2

1

ξ η

ηξ
ηξ

ννλ

Finally, () dSnQF
icS

i ˆ⋅∫
rr

ν can be rewritten as

() dSnQF
icS

i ˆ⋅∫
rr

ν = ()()∑
=

−++
JP

j

j
inbij

j
icij

j
inbij

j
icij qfqsfffs

0
max2

1
λ (8.3)

where []ijsS = is the surface matrix and []ijfF = is the face matrix.

At boundaries, the flux computation follows the same structure except that now

() icinb QfunctionQ
rr

= with the functional dependency determined by the boundary condition

employed. Currently inviscid surface, supersonic inflow, and a combination of subsonic
inflow/outflow boundary conditions have been implemented.

Now that all the integrals have been evaluated, the 3D DG Euler equations, eqn. (7.3), can be
written as

() () ()
iczyxinbicinbic

ic fMzfMyfMxQFQSFFFS
t

Q
M

rrrrrrr
r

⋅+⋅+⋅++−+−=
∂

∂
22

1 maxλ
 (8.4)

30

All the integrals in M, S, F, Mx, My, and Mz are evaluated using Gaussian quadrature. The
solution is advanced in time using a 4 stage Runge-Kutta time algorithm.

9.0 Conversion of CEM Solver to Euler Flow Solver

The structure of the CEM solver is presented in the form of a flowchart in Appendix 1. As was
stated in our proposal, it has been possible to convert the CEM solver to an Euler solver without
making any appreciable change to the structure of the solver. The details of the Euler solver are
presented in the following paragraphs.

Basis function/Geometry Data Base
The subroutines hex_vol_moms.c, hex_sur_moms.c, and hex_fac_moms.c are used in original
form to compute the M, Mx, My, Mz, S, and F matrices which will be used in solving eqn (8.4).

Flow initialization
The initialization subroutine q_init.f has been modified to initialize the flow field using a
constant freestream flow condition defined by the user in the form of the variables uincqn, n
=1,6. This initialization needs to be recoded later for more general flow initialization.

Flux computation
The flux subroutine iflxn.f was modified to compute the Euler fluxes using eqn (8.3). This
subroutine is modified only slightly from the CEM version. In CEM, the fluxes fic and finb are
linear combinations of qic and qinb. In the case of inviscid flow, eqns. (7.6) and (7.7) need to be
used since the fluxes are nonlinear. Once the flux coefficients jf are computed using eqns. (7.6)
and (7.7), the original structure of the subroutine can be retained since the flux subroutine was
developed using the linear combination of the solution coefficients jq as the flux. The S and F
matrices in this subroutine are used without change from the original subroutine. Subroutines
jacobian.f and fluxcoefficient.f were added to compute the flux coefficients.

Boundary conditions
In this version, boundary condition subroutine ubc_pc.f has been modified to be a inviscid
surface tangency boundary condition, ubc_rc.f has been modified to be a plane of symmetry
boundary condition, and ubc_ob.f has been modified to be a subsonic/supersonic inflow/outflow
freestream boundary condition. New subroutines hex_ob_quads.c and hex_rc_quads.c were
added (essentially just a copy of hex_pc_quads.c) with the appropriate “ob” or “rc” variables
dynamically allocated and used. These new subroutines allow these boundary condition
subroutines to use the same data base that the “pc” subroutine is using. A more complete
boundary condition library needs to be developed since a general flow code needs many more
types of boundary conditions.

Gradient Mass Term
The subroutine ivlux.f needs to be modifed for the Euler fluxes (again since in CEM the fluxes
are a linear combination of Q). This subroutine computes the gradient mass integral term of eqn.
(8.2). Again where solution coefficients jq were being used for the flux, jf flux coefficients are

31

computed and used. This is just the same procedure as was done in modifying the flux
computations.

Post-processing
Finally the output subroutine write_soln.f needs to be modifed to output the appropriate flow
variables for the Euler flow solver and remove all CEM output.

In the conversion, one can see that the modularity of the CEM TEMPUS code allows most of the
code to be used in the original state. Only four segments of the code needed to be modified,
namely, (1) flow initialization; (2) flux computation; (3) boundary conditions; and (4) post-
processing.

10.0 Verification of the Implementation

In this section, we present results obtained using the 3D DG Euler solver for inviscid flow over a
2D cylinder. The grid employed in the simulation is shown in fig. 13. The geometry considered
is a half cylinder with radius =1.0, and span width = 10.0. The outer boundary is a half circle of
radius = 30.0. The grid has 30 points equally spaced on the circumference of the cylinder and 30
points normal to the cylinder surface with the first point off the cylinder surface at a distance =
0.05. Four equally spaced span points are used. The cell topology is hexagonal. This grid was
run using the 3D DG Euler code and the fully validated structured grid solver, USA [12]. The
flow conditions employed are

1.4 ,0.0 ,0.0 ,3.0 ,0.1 ,0.1 ====== γρ wvup

 Figure 13. 2D cylinder grid

The DG code was run in p0 (first order) mode with a CFL=1.0 and in p1 (second order) mode
with CFL=0.3. Fig. 14 shows that the DG code is slightly less dissipative than the USA code for

32

the same order of accuracy. The potential flow solution is shown as a reference. One must
remember that in solving the Euler equations, there will be numerical dissipation which will
cause differences from the potential flow solution. Further testing of the Euler DG code needs to
be done. Validation of the p2 (third order) mode will be carried out in Phase II.

 Figure 14. u velocity on cylinder surface

11.0 Design of a Common Platform for Multi-physics Computation

In this section, we discuss the design of a common platform for multi-physics computation.

11.1 Multidisciplinary analysis

In a multidisciplinary analysis, from the point of view of numerical simulation, following
situations may arise:

1. Different physical phenomena involved in the analysis may require different
computational domains (Fig. 15). For example, in the case of aeroelasticity the
computational domains for the equations of fluid flow and elasticity are different. The
two phenomena interact at the boundaries of the domain.

2. The physical phenomena involved may require the same computational domain (Fig. 16).
In this case there are two different possibilities:

a. The same grid may be employed in solving all the governing equations.
b. All physical phenomena involved may not require the same grid resolution and as

such different grids may be used for different physical phenomena.
3. A combination of situations 1 and 2.

33

Grid for Physics 3

Grid for Physics 4

Grid for Physics 1

Grid for Physics 2

Figure 15. Different computational Figure 16. Same computational domains
 domains for different physics for different physics

In all these situations the governing equations may either be solved in a coupled manner or in an
uncoupled manner. A coupled solver would involve inversion of a single matrix while an
uncoupled solver would involve inverting several matrices. In either case a highly accurate
interpolation module is required when the volume grids in the same computational domain or
surface grids in the case of different computational domains are different. The DG scheme
makes such interpolations quite simple. The expression for the expansion of the dependent
variables in terms of the basis functions also serves the role of interpolation function. The
TEMPUS code has a modular structure to be able to be modified to handle the three situations
listed above.

The partial differential equations that govern different physical phenomena may either be
hyperbolic, parabolic or elliptic. From a numerical simulation point of view they may be
categorized as either in a conservation form or in a non-conservation form. In the case of
equations in conservation form with all positive eigen-values, the solution process mainly
involves computation of flux vectors at element boundaries, volume source terms, and in the
case of implicit schemes, the flux Jacobian. Therefore, it is indeed possible, as has been
demonstrated by us in the case of computational electromagnetics (CEM) and computational
fluid dynamics (CFD), that a common tool may be developed with individual modules for
computation of flux terms, source terms and flux Jacobian to account for different physical
phenomena involved.

The discussion above leads to the following ingredients for a multidisciplinary tool:

34

1. A module for establishing connectivity at the boundaries of different computational
domains (such as solid/liquid interface).

2. A routine to compute connectivity between different grid cells in the same computational
domain but belonging to different grids.

3. A solver for equations in conservation form with only positive eigen-values that includes
individual flux, source, and Jacobian modules for various physical phenomena involved
in the simulation.

4. Individual solvers for all other governing equations.
5. Interface for exchanging information at computational boundaries for different physics.

In addition to having the ingredients listed above, a successful commercial multidisciplinary
simulation tool should be complete, user friendly, fast, and should require reasonable computing
resources. Completeness requires the tool to perform all the tasks related to the simulation. User
friendliness is obtainable through the development of a graphical user interface (GUI) that is
intuitive and that guides the user through the process quite smoothly. Speed and resource
requirements are closely associated with the numerical scheme employed in the simulation and
the extent of intelligence built into the tool.

We will use HyPerComp’s CEM simulation tool TEMPUS as the initial framework to develop
this multi-disciplinary/multi-physics tool. The 3D DG CEM solver part of TEMPUS has been
mentioned previously in the report as it is the solver which was used in the conversion to a 3D
DG Euler solver. Now the whole TEMPUS environment will be described.

11.2 TEMPUS

In the last three years, HyPerComp has been involved in the development of TEMPUS, a
complete tool for the simulation of Maxwell’s equations. Starting with the creation of the
geometry of the system to be simulated, TEMPUS has the ability to repair geometric
imperfections, define a computational domain and discretize it, setup boundary conditions,
prepare input required by the solver, perform domain decomposition for parallel processing, and
execute the solver. Our design of a common platform for multidisciplinary analysis is based on
our experience in developing TEMPUS.

35

Domain Decomposition

Figure 17. TEMPUS environment for wide band CEM applications

At the core of the TEMPUS environment, there is a collection of technologies that represent the
strength of TEMPUS. Some of them are listed here:

1. A higher order discontinuous Galerkin method that is currently operational up to 10th

order for spatial representation of electric and magnetic fields inside each computational
finite-volume cell.

2. A hybrid unstructured grid framework for modeling complete targets including engine
inlets with stages of fan blades

3. Modeling of general materials such as lossy/lossless dielectric, resistive cards, impedance
layers and dispersive media

4. Highly scalable parallel code architecture that is transportable across different platforms.

11.3 Higher Order Schemes for Multidisciplinary Analysis

Our choice for higher-order multidisciplinary analysis is the DG scheme. This choice is based
not only on our extraordinary success in developing a DG based higher-order solver for CEM
that clearly demonstrates the ability of a higher-order DG scheme to produce very accurate
solutions with appreciable decrease in turnaround time, but also on the fact that DG is the most
appropriate choice for multidisciplinary analysis based on the discussion presented in the next
three paragraphs.

36

One of the earliest attempts at developing highly accurate numerical schemes employed a

spectral method. In a spectral method the dependent variables Q
r

 are expanded in terms of a

basis function ()()nizyxvi ,1,,, = as in

i

ivQQ ∑=
=1

rr
. The solution process solves for the coefficients

niQi ,1=
r

. This scheme requires the solution to be continuous across the computational domain
and performs exceedingly well for problems that satisfy the requirement. Unfortunately a large
category of problems that we encounter in real life does not satisfy such a requirement. A
natural extension to the spectral method that is less restrictive is to employ a local basis function
rather than a global one. The DG scheme does just that. Use of a local basis function permits
the solution to be discontinuous at element boundaries and thus enables application of the
scheme to problems wherein accurate solutions may be obtained by resolving discontinuities at
element interfaces. Within each element the solution is assumed to be continuous. This
restriction is obviously much less severe than the restriction imposed by a spectral method
wherein the solution is required to be continuous across the whole computational domain.

Essentially non-oscillatory (ENO) schemes and the weighted ENO (WENO) schemes also
employ local basis functions. The main differences between the ENO schemes and the DG
schemes are:

1. The ENO schemes solve for the dependent variables while the DG schemes solve for the

coefficients niQi ,1=
r

2. In an ENO scheme the coefficients niQi ,1=
r

 are computed by an appropriate fit of the
data in the neighborhood of an element while in a DG scheme a weak form of the
solution is employed in the computation of the coefficients.

Item 1 above implies that the DG scheme is solving for more unknowns than the ENO schemes.
Item 2 implies that the ENO schemes employ a much larger numerical stencil than the DG
schemes. As advantageous as it is to solve for less number of unknowns, the use of a much
larger stencil in ENO schemes renders the schemes almost unusable due to severe stability
limitations.

One of the attractive features of the DG schemes is the compactness of the stencil employed.

That is, the equations that determine the coefficients niQi ,1=
r

 depend only on the data in the
immediate neighborhood of a stencil. The PADE type of finite difference schemes also has this
property of compactness. Unfortunately such schemes do not extend easily to unstructured
grids. The DG schemes extend quite naturally to discretizing the computational domain using
elements of arbitrary shapes and as such have a clear advantage over the PADE schemes. The
advantages that unstructured grids have over structured grids are so powerful that it is almost
imperative that we choose a scheme that extends easily to unstructured grids.

Based on the above discussion, the higher-order multidisciplinary platform that we will develop
will employ a DG scheme and unstructured grids.

37

11.4 Computational Environment for Multidisciplinary Analysis

There are two principal methods to integrate multiple physical phenomena into a single
computational environment. They are:

(a) Tight (monolithic) coupling, in which the various physical modules are integrated into
one large matrix system using a single numerical strategy and inverted in bulk, and,

(b) Loose (iterative) coupling, in which the various physical models are solved individually
and global iterations are performed in order to converge them in a given time step

Most of the multidisciplinary analyses currently carried out employ loosely coupled algorithms.
For example, in the analysis of the interaction between aerodynamic and elastic forces,
aerodynamic loads are computed first and the resulting elastic response is then evaluated to
obtain a modified shape which is used to recompute the aerodynamic loads. This process is
continued until a convergence criterion is satisfied. As such a loosely coupled algorithm only
requires an interface between different solvers employed in the simulation of different physical
phenomena. This may be quite easily achieved by developing a modular environment and the
required interfaces. Our goal is to go beyond the development of such an environment and
develop strongly coupled algorithms wherever possible. Magnetogasdynamics, multiphase, and
free surface flows are examples wherein a strongly coupled algorithm may be developed. Fig. 18
shows a sampling of multidisciplinary problems that may be handled by the proposed
environment.

Although a loosely coupled multidisciplinary analysis may appear attractive for its simplicity in
implementation, freedom in discretization procedures, and ease in extending to different
phenomena, a tightly coupled analysis is certainly desirable since it is likely to be more accurate,
more stable, and will permit use of larger time-steps for time-accurate simulations. Our choice is
a combination of two. We propose to employ a tightly coupled strategy wherever possible. For
example, a multi-species flow with chemical reaction may be solved in a coupled manner while
the analysis of the interaction between aerodynamic and structural forces will require a loosely
coupled strategy.

One of the challenges that we need to address is related to optimizing the resource requirements.
In a higher-order DG scheme, the number of dependent variables increases with the order of the
scheme. Since the computing resources required are usually nonlinear functions of the number
of dependent variables, it is quite easy to stress the available resources beyond their limits. The
main task is to ensure that we employ an adaptive order scheme so that we use only as high an
order of scheme for an element as is required by the solution and not any higher.

The second challenge is developing an efficient strategy for parallel execution of
multidisciplinary simulation. In the case of a tightly coupled strategy, this is not a major issue
since the same grid is employed in solving different governing equations. Any standard domain
decomposition module such as METIS may be employed to ensure efficient parallel
performance. In the case of a loosely coupled system, we first need to evaluate the CPU time
required by different solvers and based on the grid employed and the time required by the solver
we need to develop an optimal distribution of work among available processors. In order to

38

ensure maximum efficiency, we may have to perform different number of iterations for different
solvers before data is exchanged between them.

FREE SURFACE
PHENOMENA

0)V(
t

=∇⋅+
∂
∂

ϕ
ϕ r

SCALAR
TRANSPORT

Tk)T]V(
t

T
[ñCp ∆=∇⋅+

∂
∂ r

CD)CV(
t

C
∆=∇⋅+

∂
∂ r

FLUID-FLOW

0V

Bj
ñ
1

p
ñ
1

-V)V(
t
V

=⋅∇

×++⋅∇+

∇=∇⋅+
∂
∂

r

rrr

rr
r

gô

AERO-ELASTICITY

}{][][][fzkzczm =++ &&&

()
() SUD

UxUF
t

U

+⋅∇=

−⋅∇+
∂
∂

)(

)(&r

MHD

0 B B
ì

1
j

0
=⋅∇×∇=

rrr

);BV(BÄ
óì

1

t

B

0

rrr
r

××∇+=
∂
∂

External MHD generator

Onboard systems

Ionizer

Inlet flow control
MHD
generator

Combustor
MHD
accelerator

External MHD generator

Onboard systems

Ionizer

Inlet flow control
MHD
generator

Combustor
MHD
accelerator

Hypersonics / AJAX Acoustics / Turbulence

Aero-elasticity
Free surface MHD in
fusion/metallurgy

Figure 18. Some Multiphysics Problems of Interest

Figs. 19 and 20 show a sample strategy to parallelize an incompressible free surface MHD flow
simulation. Various physical elements are individually converged to an acceptable tolerance.
Different physical phenomena may require different grid resolution, thus requiring a strategy to
exchange information across grid levels. As discussed in section 11.1, use of DG as a higher-
order scheme simplifies exchange of information between different grids and the only module
that needs to be developed is an octree based technique for locating the element in one grid that
contain a given point from another grid.

39

Problem Definition

Grid generation

Analytical methods
simple domains

Free software
EAGLE
NGP

ICEM, other
commercial

software

TEMPUSG

Grid generation

Analytical methods
simple domains

Free software
EAGLE
NGP

ICEM, other
commercial

software

TEMPUSG

Translation to HIMAG format
(UNIVBK)

Specify boundary conditions
(HIMAG-PREP)

Parallelization

ux2graph
(creates .graph file)

KMETIS
(creates n.color files)

color-ux
creates .ux .ugp files

Parallelization

ux2graph
(creates .graph file)

KMETIS
(creates n.color files)

color-ux
creates .ux .ugp files

ux2graph
(creates .graph file)

KMETIS
(creates n.color files)

color-ux
creates .ux .ugp files

Figure 19. Pre-processing setup for HIMAG: HyPerComp Incompressible
 MHD solver for Arbitrary Geometries

Momentum Solver (getdu)Momentum Solver (getdu)

Pressure Poisson EquationPressure Poisson Equation

ElectromagneticsElectromagnetics

å1å1

Free surfaceFree surface

time level n
time level n+1

å2å2

å3å3

å4å4

Figure 20. Parallelization strategy for the incompressible MHD solver
HIMAG – the ε s represent tolerances of individual solvers

40

12.0 Suggestions for future work

Our proposal for the continuation of the work done under Phase I involves the following 3
categories:

1. Construction of a general purpose three-dimensional code environment for multiphysics
simulation. The starting point for this task is the existing TEMPUS CEM environment.

2. Implementation and enhancement of high order algorithms addressing multiphysics
3. Demonstration of the high order platform for selected candidate problems requiring

multiphysics simulations

Detailed list of subtasks to be done under each of the tasks listed above is given below.

T-1: Multidisciplinary Environment Development Tasks
T-1.1: Starting with the TEMPUS CEM environment, develop and incorporate data structure for

modeling multiphysics simulations and optimize memory resource requirements
T-1.2: Develop GUIs for problem set up, boundary conditions and run set up for various physics
T-1.3: Develop interfaces including interpolation routines for data communications between

different solvers for different pysics.
T-1.4: Develop appropriate parallel MPI routines for multiphysics data communication across

nodal boundaries
1.4.1 Parallel data structure for moving mesh
1.4.2 Load balancing for moving/adaptive mesh

T-1.5: Add to the GUI a database for relevant physical properties
T-1.6: Develop makefile/compiler options for portability across different parallel hardware

T-2: High Order Algorithm Enhancement Tasks

T-2.1: Develop orthonormal basis function set for at least up to 10th order for multiphysics
T-2.2: Special basis functions for singular regions (e.g. sharp leading edge regions)
T-2.3: High order boundary condition procedures (e.g. nonreflecting outer boundary conditions)
T-2.4: Develop linearization procedures for advection terms
T-2.5: Develop Riemann flux routines for different physics
T-2.6: Multi-order and implicit time step procedures
T-2.7: Limiters/filters/pre-conditioners/penalty functions and other stabilizing/code acceleration

techniques
T-2.8: Incorporation of high order geometry representation and nonorthogonal grid effects
T-2.9: Coupling procedures for elliptic, parabolic and hyperbolic regions/aspects of

multiphysics
T-2.10: High order level set procedures for free surface tracking

T-3: Tasks on Multiphysics Simulation/Demonstration
This set of tasks will complement ongoing research efforts and will synchronize with the time
lines in which model development from those projects will supplement and validate present
results. Unit problems in MHD, turbulent fluid flow , acoustics and aerothermal flows will be
considered. The first two problems below will be used as demonstration cases on large scale

41

parallel LINUX cluster. Specifics of the later tasks will be determined jointly with the program
monitor.

T-3.1: Euler/Navier-Stokes/Maxwell equations for MGD with chemical kinetics
Hypersonic inlet flow with viscosity, (RANS) turbulence and MHD terms.

T-3.2: Incompressible flow with MHD and a free surface
Free surface flow of liquid metal past a cylinder in the presence of a magnetic field

T-3.3: Demonstration of high order DG for a candidate turbulent flow problem
T-3.4: Demonstration of a flexible structure with active feedback control
T-3.5: Study of high order absorbing outer boundary conditions for an acoustics problem
T-3.6: Application of high order DG for accurate simulation of aerothermal prediction

T-4: Analysis
In addition to all of the above, we intend to perform preliminary analysis of the DG scheme as
we develop it, and study its stability and convergence properties.

13.0 References

[1] Shankar, V., “CFD-Based Higher order methods for broad band parallel applications in
computational electromagnetics (CEM),” ICCFD2, 2nd Int. Conf. on CFD, Sydney
Australia, July 2002

[2] Brio, M., Wu, C.C., “An upwind differencing scheme for the equations of ideal magneto-
hydrodynamics,” Journal of Computational Physics, Vol. 75, pg. 400-422, 1988

[3] Wu, C.C., “On MHD intermediate shocks,” Geophysical Research Letters, Vol. 14, No. 6,
pg. 668-671, June 1987

[4] Roe, P.L., Pike, J., “Efficient Construction and Utilization of Approximate Riemann
Solutions,” Computing Methods in Applied Sciences and Engineering, VI, Elsevier
Science Publishers, INRIA, 1984.

[5] Sutton, G.W., Sherman, A., “Engineering Magnetohydrodynamics,” McGraw-Hill Inc.,
1965

[6] Atkins, H.L, Shu, C.W., “Quadrature-Free Implementation of Discontinuous Galerkin
Method for Hyperbolic Equations”, ICASE Report No. 96-51 (1996).

[7] Chakravarthy, S.R., ”High Resolution Upwind Formulations for the Navier-Stokes
Equations,” VKI Lecture Series, 1988-05

[8] Cockburn, B., Lin, S.Y., Shu, C.W., “TVB Runge-Kutta local projection discontinuous
Galerkin finite element method for conservation laws III: One dimensional systems”,
Journal of Computational Physics, V84 (1989), pp. 90-113.

[9] Jiang, G.-S., Wu, C.-C., “A high-order WENO finite difference scheme for the equations
of ideal magneto-hydrodynamics,” Journal Comp. Phys., Vol. 150, pg. 561-594, 1999

[10] Xu, K., “Gas-kinetic theory based flux splitting method for ideal magnetohydrodynamics,”
ICASE report 98-53, November 1998

[11] Munipalli, R., Shankar V., “Development of computational capabilities in real gas MHD
simulations,” AIAA paper 2001-0198, 39th AIAA Aerospace Sciences meeting, Reno, NV,
January 2001

[12] Chakravarthy, S.R., Szema, K.Y., “Unified Nose-to-Tail Computational Method for
Hypersonic Vehicle Applications”, AIAA Paper No. 88-2564, 1988.

Appendix 1

Flowchart starting from main.c

Flowchart starting from isolve.f

main.c
start

idrive.

download_input.

down_load_ux.c

host

upload_input.

nod

Read in input

upload_ux.c Read in grid

download_up. upload_up. Read in unstructured grid

download_patches. upload_patches. Read in partition boundary

prep_grid. Initialize face mapping arrays, compute face

alloc_init. allocate. Dynamic allocation of

init_moments.c

hex_vol_moms.c hex_sur_moms.c hex_fac_moms.c Compute M, S, F

hex_pc_quad hex_ob_quads
Compute quadrature
points

inc_init. iuinc_init.f q_init.f memset.c Initialize flow

isolve. Flow

isolve.f Driver for

iflx.f 4 stage Runge-Kutta explicit time

nq_send. Broadcast/receive boundary solution

iflxn.f Compute interior

roushrv
42

	AFRL-VA-WP-TR-2004-3014.pdf
	Table of Contents
	Higher-Order Common Platform for Complex Multi-Physics Computation
	
	Final Report

	1.0 Introduction

	4.1 Perfect Gas Euler Equations in 1-D
	4.2 Quasi 1-D Perfect Gas Flow
	4.4 Limiters
	5.4 Quasi-1D Flow
	
	
	
	Figure 8. Solution for t=0.5
	Figure 9. Initial Conditions for the shock-tube problem

	This section describes how each of the integral terms in eqn. (7.3) is evaluated. The first integral to be evaluated is ��which will be rewritten using the basis function expansion for Q.
	The final integral is �. This is a surface integral at the interior cell faces which will use information from the current cell (ic) and the neighbor cell (inb). The face flux is formed using the local Lax-Friedrichs scheme.
	Finally, � can be rewritten as

	Suggestions for future work
	Construction of a general purpose three-dimensional code environment for multiphysics simulation. The starting point for this task is the existing TEMPUS CEM environment.
	T-1: Multidisciplinary Environment Development Tasks
	T-2: High Order Algorithm Enhancement Tasks
	13.0 References
	Appendix 1

